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What is Today’s Destination?



Risky tests of specific predictions made by theories is an important idea, but is
beset by too many challenging problems.

Assertion: the zone of possibility is far larger than the zone of impossibility.

Instead, let’s do risky tests of specific ‘anti-predictions’ made by theories.
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WHAT ARE THE GENERAL EXPECTED OUTCOMES?

IGSCA Trees

Great for

FDA!

;
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WHAT COULD BE THE CENTRAL DISEASE?

5

{Theory Crisis v2,
4

Assertion: You cannot replace a very
poor theory with ‘no theory’.
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HOW MIGHT THIS CENTRAL DISEASE BE CURED?
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Manuscript 1: An
Elaboration:
Falsificatory Data
Analysis
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MODERN PROBLEMS OF PSYCHOLOGICAL SCIENCE

POTENTIAL SOLUTION: ELABORATING TUKEY'S EDA/CDA DISTINCTION
RESEARCH QUESTION
METHODOLOGY

EXPECTED OUTCOME AND BIG PICTURE
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1. Covariate selection is highly
impactful (cineieran 200 merean 2000
Pearl & Mackenzie, 2018; Wysocki et al., 2022)

2. Multiverse and multi-analyst
analyses (vasur a scnarkow, 2000,
Simonsohn et al., 2020)

3. The ‘Piranha’ problem (oo et 2005

1/ 59 Wysocki et al. (2022, Fig 1.)
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1. Covariate selection is highly
impactful (cineierar, coon merieatn 2000
Pearl & Mackenzie, 2018; Wysocki et al., 2022)

2. Multiverse and multi-analyst
analyses (vasur a scnarkow, 2000,
Simonsohn et al., 2020)

3. The ‘Piranha’ problem (o< et 2005

Masur and Scharkow (2020)
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MODERN PROBLEMS SOLUTION: ELABORATION RESEARCH QUESTION METHODOLOGY EXPECTED OUTCOME AND BIG PICTURE
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PROBLEM 3

WHAT ARE THE 3 PROBLEMS?

1. Covariate selection is highly
impactful

2. Multiverse and multi-analyst
analyses

3. The ‘Piranha’ problem
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MODERN PROBLEMS SOLUTION: ELABORATION RESEARCH QUIZS'I'IU\' METHODOLOGY EXPECTED OUTCOME AND BIG PICTURE
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DONC ALORS?

WHY DO THESE PROBLEMS MATTER?

~]\’Qpht.7hu|1/

Stigglics,

> The Foundation .
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MODERN PROBLEMS SOLUTION: ELABORATION RESEARCH QUESTION METHODOLOGY EXPECTED OUTCOME AND BIG PICTURE
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SOLVE BY ELABORATING ON TUKEY’S DISTINCTION: EDA/CDA/FDA

) Scientific Reasoning
» EDA ~» What is true?
» CDA - Is what we believe true?

» FDA -~ What do we refuse to believe
is true?

» Theory-based rejection of data
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> Predictors vs Anti-Predictors

> Significant effect-of or association-with predictor ~ v/
> Significant effect-of or association-with anti-predictor ~ X

» Zone of Possibility vs Zone of Impossibility

» Theory-based possible and impossible parameter-space values
» Theory-based possible and impossible data-space values
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MODERN PROBLEMS
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SOLUTION: ELABORATION

Q
ooe

DEFINITIONS AND EXAMPLES OF USING FDA

RESEARCH QUESTION METHODOLOGY
o

EXPECTED OUTCOME AND BIG PICTURE
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WHAT IS AN EXAMPLE OF THE ZONE OF IMPOSSIBILITY?
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This generative models predicts that
“individuals who develop panic disorder
will ultimately develop maximally
severe panic disorder, a prediction
inconsistent with the simple
observation that the mean severity of
panic disorder typically falls in the
moderate range "

Failure to account for effects of human

learning?



But will it really improve things? How do we know?
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Recasting historical examples

P Barrett (2017), Nadel and Moscovitch (1997),
Robinaugh et al. (2024), and Tversky and
Kahneman (1974, 1983)
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“Step 1.1)Fita (regularized)regression model ., laso).

“Step 1.2)Fit a boosted decision tre withi tree depth = 1.

“Step 1.3 Fita boosted decision tree with tree depth = 2.

effcts.
“Step 1.4 Fita boosted decision tree with tree depth =K.

‘model and compute new VIM.

(Gelman et al., 2020; Hong et al., 2020)
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1. Cognitive availability - increase frequency of this kind of scientific reasoning
2. Historically successful precedents
» Barrett (2017), Nadel and Moscovitch (1997), Robinaugh et al. (2024), and Tversky and Kahneman
(1974, 1983)
3. Logically equivalent to proof by contradiction, reductio ad absurdum, etc...

» Probabilistic Falsification ~» Deterministic Falsification
» But falsification is consensual (vcrlreath, 2020)
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WHAT 18 SEM? WHAT ARE DECISION TREES? RESEARCH QUESTION METHODOLOGY EXPECTED OUTCOMES
o
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Manuscript 2: A New
SEM Trees Variant:
|IGSCA Trees
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WHAT 1S SEM? cSEM? CSA?

WHAT ARE DECISION TREES? WHAT DO THEY HAVE TO DO WITH SEM/IGSCA TREES?

RESEARCH QUESTION: WHAT IS THE BEST WAY TO DO IGSCA TREES? WHY IS IT
NEEDED?

METHODOLOGY

WHAT IS THE POINT? WHY SHOULD [ CARE?
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mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
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rpart::rpart(mpg ~ . mtcars) R* ~ 0.75

m(mpg ~

., data = mtcars)
R*~0.8

mpg =12.3 - 0.11(cyl) + 0.01(disp)

- 0.02(hp) + 0.79(drat) — 3.72(wt)
+0.82(gsec) + 0.32(vs) + 2.52(am)
+0.66(gear) — 0.2(carb)
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semtree: :semtree(MODEL, growth.data, predictors = "G1")
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T1~~T1=0.005
T2~~T2 =0.007
T3~~T3 =0.006
T4~~T4 =0.006
T5~~T5 =0.007
intercept~~intercept = 17.056
slope~~slope = 1.424
intercept~~slope = -0.033
intercept~1 = 9.973
slope~1 =7.961

T1~~T1=0.007
T2~~T2 = 0.006
T3~~T3 =0.006
T4~~T4 = 0.005
T5~~T5 = 0.009
intercept~~intercept = 15.38
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intercept~~slope = 0.212
intercept~1 = 10.346
slope~1 =2.99
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FIGURE 1: Left Daughter Node where G1 =1
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WHAT 18 SEM? WHAT ARE DECISION TREES? RESEARCH QUESTION METHODOLOGY EXPECTED OUTCOMES
0000 0000 o [e]e]e} (e]e]

WHAT ARE SOME WEAKNESSES OF TRADITIONAL SEM TREES? HOW MIGHT
IGSCA TREES ADDRESS THIS GAP?

Traditional SEM Trees inherits the strengths and weaknesses of traditional CSA.

Pros of IGSCA Trees:
» No likelihood-related convergence failures Cons of IGSCA Trees:

» Bootstrapped measures of uncertainty
(Tests/SEs)

» Converges to local minima

' »> Potentially
» Convergence despite model over-parameterized/un-identified (= NNs)
unidentifiability...?

» Handles both components and factors

> Guaranteed convergence
» Easy case-wise statistics

> Very computationally intensive



. IGSCA implementation: Correct?

2. Best multigroup hypothesis testing and bootstrapping?
3. Constrained least-squares optimization

4. SEM trees vs. IGSCA trees

—_
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1. First IGSCA Trees in R + Fast
2. First investigation of MGA for IGSCA
3. First SEM Trees vs. IGSCA Trees
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ML-SEM + FDA = ? EX1:QC
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Manuscript 3:
Machine Learning
Structural Equation
Modeling and
Falsificatory Data
Analysis — A Tutorial




BUT WHAT DOES ML-SEM HAVE TO DO WITH FDA?

EXAMPLE 1: DATA QUALITY CHECK
EXAMPLE 2: BASIC EMOTION THEORY
EXAMPLE 3: FALSIFICATION TESTS

WHAT IS THE POINT? WHY SHOULD [ CARE?
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ML-SEM + FDA = ?

EX1:QC
[ le] [e]e)

Central Tension:

» SEM Trees may overfit: semblance
of meaning out of meaningless
noise

» However, null hypothesis is
quasi-always false, there is always
a difference

» Side-step: Severely test

theoretically impossible differences
using SEM Trees

» Anti-predictors
» Zone of impossibility
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EX3:FT EXPECTED OUTCOMES
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N=1000 LR=1687.3(df=10)

() 61 in[0 ] (3es)

T1~~T1=0.005 T1-~T1=0.007
T2~~T2 =0.007 T2~~T2 =0.006
T3~~T3 = 0.006 T3~~T3 = 0.006
T4~~T4 = 0.006 T4~~T4 = 0.005
T5~~T5 = 0.007 T5~~T5 = 0.009

intercept~~intercept = 17.056
slope~~slope = 1.424
intercept~~slope = -0.033
intercept~1 = 9.973
slope~1 =7.961
N=526

intercept~~intercept = 15.38
slope~~slope = 1.396
intercept~~slope = 0.212
intercept~1 = 10.346
slope~1 = 2.99
N=474




Let's put everything together!
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ML-SEM + FDA =? EX1:QC EX2:BET EX3:FT EXPECTED OUTCOMES
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WHAT ARE THE ASSERTIONS OF BASIC EMOTION THEORY?

‘Basic emotions’ are said to be genetically inherited phenotypic charac-
teristics that are specific adaptations with fixed physical forms and fixed
functions across time. For example, instances of FEAR are thought to
manifest with a small degree of variation around a universal pattern of
physiological changes, expressive behaviors, and so on (see van Heijst et
al., 2025, p. 377). This pattern is hypothesized to have evolved as an adap-
tation to navigate the recurrent fitness challenge of encountering preda-
tory threat. Its cause is reduced to a single, innate (hardwired) neural
circuit that does not change or function differently across time, context,
or individual.
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Anti-predictor: Person’s culture and context of stimuli presentation
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ML-SEM + FDA =? EX1:QC EX2:BET EX3:FT EXPECTED OUTCOMES
(e]e] (o] [e]e]e} e0 (e]e]

How cAN [ USE MIL-SEM + FDA TO VERIFY SCIENTIFIC ASSUMPTIONS?

» The hippocampal + MTL brain regions ~ Episodic Memory
» Episodic memory concerns memory of events that happened in the past

» Let's study the neural instantation of time by comparing memory of events
‘with’ and ‘without’ temporal ordering

» We begin with a behavioral study to validate our paradigm before
commencing costly neuroimaging

A falsification test is when we attempt to falsify “empirically testable
implications of the identifying assumptions” behind a causal
estimate; failures to (statistically) falsify these assumptions should then raise
confidence that a causal estimate is acceptable.

Falsification test using GLMM Trees

glmertree(hit ~ strategy | (1 | ID) | counterbalance)
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Current and concrete demonstration of the productive synergy of FDA
methodology and ML-SEM methods.

From theory of ML-SEM & FDA to practice of ML-SEM & FDA
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General Conclusion & Big Picture



Risky tests of specific predictions made by theories is an important idea, but is
beset by too many challenging problems.

Assertion: the zone of possibility is far larger than the zone of impossibility.

Instead, let’s do risky tests of specific ‘anti-predictions’ made by theories.

55/ 59



GENERAL CONCLUSION & BIG PICTURE
00@000

WHAT ARE THE GENERAL EXPECTED OUTCOMES?

56/ 59



GENERAL CONCLUSION & BIG PICTURE
000e00

WHAT COULD BE THE CENTRAL DISEASE?

>

{Theory Crisis v2.0)
4
¥

Assertion: You cannot replace a very
poor theory with ‘no theory’.

57/ 59



GENERAL CONCLUSION & BIG PICTURE
000080

HOW MIGHT THIS CENTRAL DISEASE BE CURED?
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Mi1: FALSIFICATORY DATA ANALYSIS M2: ML-SEM M3: ML-SEM AND FDA NOMENCLATURE NOMENCLATURE REFERENCES REFERENCES
o L]

o

WHAT’S THE (MY) PROBLEM WITH TCE?

> It seems that Theory of Constructed Emotions’ (TCE) conditions for
falsification are completely different from BET

» Basic Emotion Theory (BET) is almost too easy to falsify

» What TCE and BET each consider to be signal vs noise in data, is completely

different
Assertion: We can only meaningfully falsify BET and make progress because TCE
exists. Otherwise, we're forced to hold onto BET because you cannot replace a

‘bad’ theory with no theory.
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